hypergeometric distribution - significado y definición. Qué es hypergeometric distribution
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es hypergeometric distribution - definición

DISCRETE PROBABILITY DISTRIBUTION
Hypergeometric random variable; Hypergeometric test; Multivariate hypergeometric distribution
  • Samples used for election audits and resulting chance of missing a problem
  • Hypergeometric CDF plot
  • Hypergeometric PDF plot
  • Biologist and statistician [[Ronald Fisher]]

Negative hypergeometric distribution         
  • Several examples of the CDF of the negative hypergeometric probability distribution.
Negative Hypergeometric Distribution
In probability theory and statistics, the negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories like Pass/Fail, Male/Female or Employed/Unemployed. As random selections are made from the population, each subsequent draw decreases the population causing the probability of success to change with each draw.
Noncentral hypergeometric distributions         
HYPERGEOMETRIC DISTRIBUTION
Noncentral hypergeometric distribution
In statistics, the hypergeometric distribution is the discrete probability distribution generated by picking colored balls at random from an urn without replacement.
Hypergeometric function         
SPECIAL FUNCTION DEFINED BY A HYPERGEOMETRIC SERIES
Schwarz s-map; Euler hypergeometric integral; Gauss's hypergeometric theorem; Hypergeometric equation; Hypergeometric; Hypergeometric functions; Gauss hypergeometric theorem; Gauss hypergeometric function; Kummer's formula; Kummer's quadratic transformation; Hypergeometric differential equations; Hypergeometric differential equation; Hypergeometric series; Gaussian hypergeometric series; Gauss's hypergeometric series; 2F1; Gauss's summation theorem; Gaussian hypergeometric function
In mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE).

Wikipedia

Hypergeometric distribution

In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of k {\displaystyle k} successes (random draws for which the object drawn has a specified feature) in n {\displaystyle n} draws, without replacement, from a finite population of size N {\displaystyle N} that contains exactly K {\displaystyle K} objects with that feature, wherein each draw is either a success or a failure. In contrast, the binomial distribution describes the probability of k {\displaystyle k} successes in n {\displaystyle n} draws with replacement.